Journal of Organometallic Chemistry, 378 (1989) 199–210 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 20183

Oligophosphan-Liganden

XXXI *. Untersuchungen zur C-H-Aktivierung durch d^{6} -ML₅-Komplexfragmente des Molybdäns: Synthese und Reaktivität der Hydridoderivate MoH₂(PMe₃)₂(pp₂), MoH₄(PMe₃)(pp₂) und MoH(CH₂PMe₂)(PMe₃)(pp₂) (pp₂ = MeP(CH₂CH₂CH₂PMe₂)₂) **

L. Dahlenburg *** und B. Pietsch

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13 (B.R.D.)

(Eingegangen den 14. Juni 1989)

Abstract

The reduction of $MoCl_3(pp_2)$ (1) $[pp_2 = MeP(CH_2CH_2CH_2PMe_2)_2]$, with highly dispersed lithium or sodium in the presence of 2 equivalents of PMe₃, in Et₂O under argon, yields metallacyclic MoH(CH₂PMe₂)(PMe₃)(pp₂) (4). Reduction of 1 in the presence of excess PMe₃ affords the Mo^0 derivative $Mo(PMe_3)_3(pp_2)$ (5) which dissociates in solution to give 4. Attempts to prepare metallacycle 4 or related Mo/C-H insertion products by photolysis of hydrido precursors such as $MoH_2(PMe_3)_2(pp_2)$ (2) (synthesized by lithium reduction of 1 in the presence of excess PMe₃, in THF under H₂ atmosphere), or MoH₄(PMe₃)(pp_2) (3) (similarly obtained from 1, Na, and H₂ in the presence of stoichiometric amounts of PMe₃), were unsuccessful. Although an equilibrium of 4 with its metal(0) tautomer $Mo(PMe_3)_2(pp_2)$ could not be detected by NMR spectroscopy, the coordinatively unsaturated 16e fragment could be trapped by donor ligands as well as by reactants capable of undergoing oxidative addition processes: (i) treatment of 4 with N_2 rapidly and quantitatively affords $M_0(N_2)(PMe_3)_2(pp_2)$ (9); (ii) PMe₃ reacts slowly and incompletely with 4 to form phosphine complex 5; (iii) H_2 adds to the metal center of the Mo^0 tautomer to give the dihydride 2; (iv) CO_2 is partially reduced to give $Mo(CO_3)(CO)(PMe_3)(pp_2)$ (10). The reaction of 4 with hot benzene gives the

^{*} XXX. Mitteilung: Ref. 1.

^{**} Herrn Prof. Dr. H. Sinn zum 60. Geburtstag gewidmet.

^{***} Korrespondenzautor.

 η^6 -arene compound Mo(C₆H₆)(pp₂) (6) in place of the expected C-H addition product Mo(H)(C₆H₅)(PMe₃)₂(pp₂). Complex 6 and its analogues Mo(C₆H₅Me) (pp₂) (7) and Mo(1,3,5-C₆H₃Me₃)(pp₂) (8) have also been obtained by alkali-metal reduction of 1 in the presence of the relevant arene.

Zusammenfassung

Die in Et₂O mit feinverteiltem Lithium oder Natrium in Gegenwart zweier Aquivalente PMe₃ unter Argon durchgeführte Reduktion von $MoCl_3(pp_2)$ (1) $[pp_2 = MeP(CH_2CH_2CH_2PMe_2)_2]$, ergab cyclometalliertes $MoH(CH_2PMe_2)(P-$ Me₃)(pp₂) (4). In Anwesenheit eines Überschusses an PMe₃ entstand das Mo⁰-Derivat $Mo(PMe_1)_1(pp_2)$ (5) welches in Lösung unter Bildung von 4 dissozijert. Versuche der Darstellung von 4 oder ähnlicher Mo/C-H-Insertionsprodukte durch Photolyse hydridischer Vorläufer wie z.B. $MoH_2(PMe_3)_2(pp_2)$ (2) (zugänglich durch Reduktion von 1 mit Lithium unter H₂ in THF in Gegenwart von PMe₃ im Überschuss), oder MoH₄(PMe₃)(pp₂) (3) (in ähnlicher Weise aus 1, Na, H₂ und einer stöchiometrischen Menge PMe₃ erhalten), verliefen ergebnislos. Obwohl ein Gleichgewicht zwischen 4 und seinem Metall(0)-Tautomer $Mo(PMe_1)_2(pp_2)$ NMRspektroskopisch nicht nachweisbar war, liess sich das koordinativ ungesättigte 16e-Fragment durch Donorliganden oder solche Reaktanden, welche oxidative Additionen einzugehen vermögen, abfangen: Einwirkung von N₂ auf 4 führte rasch und quantitativ zu $Mo(N_2)(PMe_3)_2(pp_2)$ (9); PMe₃ wurde von 4 langsam und unvollständig zum Phosphankomplex 5 umgesetzt; H₂ lagerte sich an das Zentralmetall des Mo^0 -Tautomers unter Bildung des Dihydrids 2 an; CO, wurde partiell reduziert und lieferte Mo(CO₃)(CO)(PMe₃)(pp₂) (10). Die Reaktion von 4 mit heissem Benzol führte nicht zu $Mo(H)(C_{c}H_{5})(PMe_{3})_{2}(pp_{2})$ als dem erwarteten C-H-Additionsprodukt sondern zum η^6 -Arenkomplex Mo(C₆H₆)(pp₂) (6), welcher ebenso wie $Mo(C_6H_5Me)(pp_2)$ (7) und $Mo(1,3,5-C_6H_3Me_3)(pp_2)$ (8) auch durch Reduktion von 1 mit Alkalimetall in Gegenwart des entsprechenden Arens zugänglich war.

Einleitung

Die *inter* molekular verlaufende oxidative C-H-Addition *freier* Kohlenwasserstoffe an unterkoordinierte Übergangsmetallkomplex-Fragmente mit 14e- oder 16e-Konfiguration (Gl. 1) ist gegenüber der mit ihr häufig konkurrierenden *intra* molekularen Cyclometallierung von *Ligand*-C-H-Bindungen (Gl. 2) immer dann benachteiligt, wenn die beim Zusammentreten der beiden Reaktand-Moleküle geschlossene M-C-Bindung nicht stark genug ist, um den unvorteilhaften Entropieverlust der Reaktion ($T\Delta S_{298} \approx -40$ kJ mol⁻¹ [2]) durch Freisetzung hinreichender Bindungsenthalpie zu kompensieren.

$$L_x M + R \longrightarrow L_x M(H)(R)$$
(1)

$$L_{x}M \xrightarrow{\ } C \xrightarrow{\ } H \xrightarrow{\ } L_{x}M \xrightarrow{\ } C \xrightarrow{\ } H \xrightarrow{\ } H \xrightarrow{\ } L_{x}M \xrightarrow{\ } C \xrightarrow{\ } H \xrightarrow{\ } H \xrightarrow{\ } L_{x}M \xrightarrow{\ } H \xrightarrow{\ } L_{x}M \xrightarrow{$$

Eine wirkungsvolle Strategie zur Begünstigung der bimolekularen C-H-Spaltung zielt daher auf eine Stärkung der M-C-Bindung durch Reduzierung der Interligand-Abstossung im koordinativ ungesättigten Teilchen L.M. Dabei haben sich die drei Metall-Haftstellen simultan belegenden 6π -Ringsysteme C₆R₆ und $C_{s}R_{s}$ - (R = H, Me) als besonders geeignete, platzsparende Stützliganden herausgestellt. Solch unterkoordinierte Aromatkomplex-Fragmente, welche wie $(C_5H_5)Re$ $(PMe_3)_2$ [3], $(C_5Me_5)Ir(PMe_3)$ [4], $(C_6H_6)Os(PMe_3)$ [5] u.ä. [6] zu Einschubreaktionen in C-H-Bindungen freier Kohlenwasserstoffe befähigt sind und zu diesem Zweck üblicherweise auf photolytischem, thermischem oder reduktivem Wege aus entsprechenden Vorläufern als kurzlebige Hochenergie-Intermediate freigesetzt werden, zeigen in ihrer Bindungskapazität eine isolobale Analogie zu den (gleichfalls zur C-H-Insertion befähigten!) Carbenen CR₂ [7]: Sie besitzen neben Acceptor-LUMOs des σ -Typs hochliegende π -Donatorniveaus, die zu lockernden Funktionen $\sigma^{\star}(C-H)$ symmetriegerecht sind [8]. Eine vergleichbare Grenzorbital-Situation kennzeichnet nun aber auch mit π -Liganden nicht behaftete Metall/-Ligand-Fragmente der Zusammensetzungen d^6 -ML₅, d^8 -ML₄, d^8 -ML₃ und d^{10} -ML₂, wenn diese folgende Koordinationsgeometrien aufweisen: $C_{4\nu}$ (d^6 -ML₅) oder $C_{2\nu}$ $(d^{8}-ML_{4}, d^{8}-ML_{3} \text{ und } d^{10}-ML_{2})$ [7-9].

Um solche Teilchen zu Einschubreaktionen in C-H-Bindungen nichtkoordinierter Kohlenwasserstoffe zu bewegen, ist es prinzipiell vorteilhaft, sich zwei- oder mehrzähniger Chelatbildner als Stützliganden zu bedienen, denn im Vergleich mit dem jeweiligen Äquivalent monofunktioneller Donatoren beanspruchen sie weniger Raum und sind daher gegen Cyclometallierungsvorgänge resistenter [10]. Auch kann man mit ihrer Hilfe die oben angesprochenen Geometrien, die in der Regel keine Grundzustandsstrukturen darstellen, beguem fixieren. Repräsentative Beispiele für derartige C-H-aktivierende Systeme, in denen das Zentralteilchen unter Chelat-Zwang carbenoide Grenzorbitale entfaltet, bieten $Pt[(C_6H_{11})_2PCH_2CH_2P(C_6H_{11})_2]$ [11], $Rh[2,6-(t-Bu_2PCH_2)_2C_6H_3]$ [12] und $\{Rh[(Ph_2PCH_2CH_2)_3N]\}^+$ [13]. Wir selbst haben dieses Konzept kürzlich am d⁸-ML₄-Teilchen Ru[(Me₂PCH₂CH₂- $\overline{(CH_2)_3P}$, welches insbesondere aromatische, aber auch olefinische und aktivierte aliphatische C-H-Bindungen zu addieren vermag, erfolgreich demonstriert [14]. An dieser Stelle berichten wir nun über den Verlauf der C-H-Addition an das Mo⁰-Zentrum der d^6 -ML₅-Spezies Mo(PMe₃)₂(pp₂) [pp₂ = MeP(CH₂CH₂CH₂PMe₂)₂]. Dieses Teilchen haben wir untersucht, um zu prüfen, ob es ähnlich wie die reaktiven in-situ-Intermediate $M(PMe_3)_s$ (M = Mo, W [15]), die wegen ihrer vollständig aus PMe_3 -Liganden aufgebauten Koordinationssphären gegenüber Mo(PMe_3)₂(pp_2) als die gehäufteren Teilchen anzusehen sind, lediglich an einer seiner PMe₃-C-H-Funktionen cyclometalliert, oder ob es in einer dem Verhalten von $(C_5H_5)Re(PMe_3)_2$ [3] vergleichbaren Weise auch zur oxidativen Addition freier Kohlenwasserstoffe fähig ist.

Mögliche Vorstufen von koordinativ ungesättigtem Mo(PMe₃)₂(pp₂)

Als prinzipiell brauchbare Ausgangsverbindungen wurden $MoCl_3(pp_2)$ (1) einerseits und $MoH_2(PMe_3)_2(pp_2)$ (2) andererseits eingestuft. Der bereits früher eingehend beschriebene Trichlorokomplex 1 [16] ist in Gegenwart von PMe₃ unter Stickstoff zu N₂-Derivaten von Mo⁰ wie z.B. $Mo(N_2)(PMe_3)_2(pp_2)$ reduzierbar [1], so dass es möglich erschien, bei Ausschluss von N₂ aus ihm auch ein sich durch oxidative C-H-Addition zum 18e-Mo^{II}-Komplex stabilisierendes 16e-Teilchen $Mo(PMe_3)_2(pp_2)$ kurzzeitig freizusetzen. Ganz entsprechend hofften wir, aus dem bislang noch unbekannten Dihydrid 2 das unterkoordinierte Metall/Ligand-Fragment durch photolytische Dehydrierung erzeugen zu können.

Zur Darstellung des gelben Komplexes 2 wurde eine THF-lösliche Form des Trichlorids 1, mer-MoCl₃(pp₂) \cdot 0.75THF [16], in diesem Lösemittel unter H₂-Atmosphäre mit feinverteiltem Lithium oder Natrium in Gegenwart eines grossen Überschusses an PMe₃ (20-30 Äquivalente) reduziert. Bei Einsatz von nur 2-4 Äquivalenten Trimethylphosphan wurden Gemische aus dem Dihydrid 2 und dem Tetrahydrid MoH₄(PMe₃)(pp₂) (3) isoliert. Die beige gefärbte Verbindung 3 wurde in reinem Zustand erhalten, wenn der Trichlorokomplex 1 in Gegenwart einer molaren Menge PMe₃ mit Natrium-Sand und H₂ zur Reaktion gebracht wurde.

Die ν (MoH)-Absorptionen von 2 treten für Nujol-Suspensionen des Komplexes bei ca. 1650 cm⁻¹ als breite Bande mittlerer Intensität zutage. Im homologen D_2 -Derivat Mo D_2 (PMe₃)₂(pp₂) verschiebt sich diese auf etwa 1250 cm⁻¹. Eine in den IR-Spektren von 2 gelegentlich zusätzlich erscheinende scharfe Absorption bei 1940 cm⁻¹ bleibt in ihrer Lage von einer Deuterierung des Komplexes unbeeinflusst und rührt nicht von der Verbindung selbst her, sondern ist auf Verunreinigungen durch das N₂-Derivat Mo(N₂)(PMe₃)₂(pp₂) [1] zurückzuführen, welches sich bei Kontakt des Dihydrids 2 mit Stickstoff rasch und quantitativ bildet. Man darf daher annehmen, dass die in der Literatur für den zu 2 analogen Komplex $MoH_2(PMe_3)_s$ angegebenen hohen "Mo-H"-Schwingungswellenzahlen (1960 cm⁻¹ [15b] bzw. 1945 und 1920 cm⁻¹ [17]) ebenfalls nicht auf ν (Mo-H)-Absorptionen zurückzuführen sind, sondern v(N≡N)-Banden von Verunreinigungen wie z.B. $Mo(N_2)(PMe_3)_5$ [15a,18] bzw. $Mo(N_2)_2(PMe_3)_4$ [19] repräsentieren. Nujol-Verreibungen des Tetrahydrids 3 zeigen zwei v(MoH)-Absorptionen bei 1675 und 1688 cm^{-1} , deren Lagen denen des eng verwandten Komplexes MoH₄(PMe₃)₄ (1672 und 1720 cm⁻¹ [15a] bzw. 1675 and 1712 cm⁻¹ [20]) nahekommen. In Hexan erscheinen diese Banden bei 1677 und 1698 cm⁻¹; Benzollösungen von 3 liefern eine verbreiterte Absorption bei 1685 cm⁻¹.

Ähnlich wie MoH₂(PMe₃), [15b,17] und MoH₄(PMe₃)₄ [15a,20], aber anders als $MoH_2(CO)_3[P(C_6H_{11})_3]_2$ [21] stellen die Verbindungen 2 und 3 keine Mo^0 -Komplexe mit molekularen H2-Liganden sondern oxidative Additionsprodukte dar. Dies ergibt sich insbesondere aus der Struktur ihrer MoH-Resonanzen. Deren scharfe Aufspaltungsmuster sind nämlich durch Kopplungskonstanten $^{2}J(PH)$ charakterisiert, welche wegen ihrer etwa eine Zehnerpotenz über den kaum auflösbaren $^{31}P/^{1}H$ -Spin/Spin-Wechselwirkungen von η^{2} -H₂-Derivaten liegenden Werte als für klassische Hydrido-Komplexe diagnostisch angesehen werden müssen [22]; 2 (80 MHz, $C_6 D_6$, 305 K): $\delta = -5.34$ (dtt); ${}^{2}J(PH) = 42.3$, ${}^{2}J(P_2H) = 32.1$ und 42.2 Hz; 3 (360 MHz, $C_7 D_8$, 360 K): $\delta = -4.27$ (quin); ${}^2J(P_4H) = 33.4$ Hz. Der Hydrid-Charakter von 2 und 3 war im übrigen schon deswegen zu erwarten, weil die relativ niedrigen N₂-Valenzschwingungen der den beiden Verbindungen durch formalen H_2/N_2 -Austausch zuzuordnenden Distickstoff-Komplexe $Mo(N_2)(PMe_3)_2(pp_2)$ $(1940 \text{ cm}^{-1} [1]) \text{ und } cis-Mo(N_2)_2(PMe_3)(pp_2) (1967 \text{ und } 2055 \text{ cm}^{-1} [1]) \text{ ein recht}$ elektronenreiches und somit zu oxidativen Additionen neigendes Metall(0)-Atom anzeigen und nach einer sehr gut erfüllten Regel von Morris [23] auch in einem Bereich liegen, welcher keine stabilen $(\eta^2 - H_2)Mo^0$ -Addukte erwarten lässt.

Sowohl 2 als auch 3 sind in der für Übergangsmetall-Komplexe der Koor-

dinationszahlen 7 und 8 üblichen Weise auf der NMR-Zeitskala gerüstflexibel: Mit sinkender Temperatur zeigen die MoH-Signale beider Verbindungen zunächst eine Verbreiterung ihrer Linien, verschwinden dann im Spektrenuntergrund (2: $T \approx 220$ K: 3: $T \approx 290$ K: 360 MHz), um schliesslich in Form separierter Resonanzen. welche die nach Einfrieren der Moleküldynamik zu fordernde unterschiedliche chemische Umgebung der einzelnen Hydrido-Liganden belegen, wieder aufzutauchen. Die Tieftemperatur-Grenzspektren liessen sich allerdings nicht erhalten. Oberhalb der üblichen Probenkopf-Temperaturen (300-310 K) beginnen auch die Linien des ddt-MoH-Signals von 2, welches eine unterschiedliche P-Umgebung zweier im zeitlichen Mittel identischer H-Lagen anzeigt, zu verschmelzen. Das Gebiet der bei Verbindung 3 aufgrund der Quintett-Struktur ihrer MoH-Resonanz in diesem Temperaturintervall bereits verwirklichten schnellen Hydrid-Fluktuation, welche die Verschiedenheit der P-Zentren mittelt, konnte für Molekül 2 aber nicht erreicht werden, da der Komplex oberhalb 360 K praktisch vollständig in das dann offensichtlich begünstigtere MoH₄-Derivat 3 übergeht. Zwar kann die Bildung von 3 aus 2 durch eine Disproportionierung gemäss

$$2 \operatorname{MoH}_{2}(\operatorname{PMe}_{3})_{2}(\operatorname{pp}_{2}) \longrightarrow \operatorname{MoH}_{4}(\operatorname{PMe}_{3})(\operatorname{pp}_{2}) + \operatorname{Mo}(\operatorname{PMe}_{3})_{3}(\operatorname{pp}_{2})$$
(3)
(2) (3) (5)

gedeutet werden; jedoch beschreibt Gl. 3 nicht den einzigen Weg, auf dem 3 aus 2 in Lösung entstehen kann: Belässt man nämlich das D-Homologe von 2, $MoD_2(PMe_3)_2(pp_2)$, für 2 h in siedendem Benzol, so kann man nach Einengen der Lösung IR-spektroskopisch auch die für $MoH_4(PMe_3)(pp_2)$ charakteristische $\nu(MoH)$ -Absorptionsbande bei 1685 cm⁻¹ beobachten; d.h.; es wird unter thermisch forcierten Bedingungen von 2 oder Folgeprodukten offensichtlich auch Wasserstoff von Molekülen des Lösemittels abstrahiert.

Das ³¹P-NMR-Spektrum von 2 (145 MHz, C_7D_8 , Raumtemp.) ergibt für die MeP-Brücke des Chelatphosphan-Liganden ein bei $\delta = 14.37$ zentriertes, leicht verbreitertes Pseudotriplett ($N \approx 37$ Hz) und für dessen endständige Me₂P-Substituenten ein recht scharfes Dublett von Tripletts bei $\delta = 3.52$ (²J(Me₂P-Mo-PMe) = 37, ²J[Me₂P-Mo(PMe₃)₂] = 27 Hz). Im Vergleich zu dem nach diesen Befunden relativ starr fixierten pp₂-Liganden sind die beiden PMe₃-Gruppen in der Koordinationssphäre von 2 sehr viel beweglicher, denn sie liefern ein gemeinsames breites Signal ($\delta \approx -1.5$), welches auch durch Abkühlen der vermessenen Lösung auf 200 K nicht aufzulösen war. Komplex 3 zeigt bei 145 MHz und Raumtemperatur in C₆D₆ folgende ³¹P-Signale: δ (PMe₃) = 11.55 (dt; ²J(Me₃P-Mo-PMe) = 23.9, ²J[Me₃P-Mo(PMe₂)] = 26.7 Hz), δ (PMe) = 23.58 (dt).

Photolyse und Thermolyse von $MoH_2(PMe_3)_2(pp_2)$ (2) und von $MoH_4(PMe_3)(pp_2)$ (3) sowie Reduktion von $MoCl_3(pp_2)$ (1)

Da die für die intermolekulare oxidative C-H-Addition erforderlichen starken M-C-Bindungen vor allem zwischen Übergangsmetallen und Arylresten geknüpft werden und die Aren-C-H-Spaltung sich somit generell leichter verwirklichen lässt als die Aktivierung von Alkanen [24], erschien es sinnvoll, vorab zu untersuchen, ob die Hydride 2 und 3 mit aromatischen Solvenzien zur Reaktion gebracht werden

können. Photochemisch geführte Experimente zeigten jedoch alsbald, dass Lösungen von 2 oder 3 in Benzol oder Toluol selbst nach 30 h UV-Bestrahlung noch unverändert waren. Zur Überprüfung des thermischen Verhaltens der beiden Verbindungen gegenüber Arenen wurden C_6H_6 - und C_7H_8 -Lösungen der Komplexe 7 h auf ca. 80 °C erhitzt. Auch auf diesem Wege war ein Angriff auf C-H-Funktionen der Lösemittel-Moleküle aber nicht herbeizuführen; es wurde lediglich die Bildung geringer Mengen der η^6 -Arenkomplexe $Mo(C_6H_6)(pp_2)$ (6) und $Mo(C_6H_5Me)(pp_2)$ (7) beobachtet (Gl. 4). Bei Einsatz des Dihydrids 2 wurde in $MoH_{(4-2n)}(PMe_3)_{(n+1)}(pp_2) + ArH \xrightarrow{>T} Mo(ArH)(pp_2) + (n+1)PMe_3$ (4) n = 0: 3; n = 1: 2 $ArH = C_6H_6$ (6), C_6H_5Me (7)

Übereinstimmung mit den oben beschriebenen NMR-spektroskopischen Ergebnissen neben unumgesetztem 2 und gemäss Gl. 4 gebildetem 6 oder 7 auch das Tetrahydrid 4 isoliert.

Nachdem sich die Hydrido-Derivative 2 und 3 somit als für eine Freisetzung des koordinativ ungesättigten reaktiven Fragments $Mo(PMe_3)_2(pp_2)$ ungeeignet herausgestellt hatten, zogen wir für diesen Zweck auch den Weg der Reduktion von $MoCl_3(pp_2)$ (1) [16] in Gegenwart von Trimethylphosphan in Betracht. Nun wandelt aber Natriumamalgam, das für Reduktionsreaktionen in aromatischen Solvenzien üblicherweise benutzte Agens, den Trichlorokomplex 1 in PMe₃-haltiger Lösung lediglich in MoCl₂(PMe₂)(pp_2) um [16]. Andererseits gelingt die Überführung des Mo-Atoms von 1 auf die Oxidationsstufe 0 jedoch, wenn mit Alkalimetallen in Ethern reduziert wird und durch Anwesenheit von N₂ als Reaktionspartner Distickstoff-Komplexe von Mo⁰ wie z.B. auch $Mo(N_2)(PMe_3)_2(pp_2)$ entstehen können [1]. Daher wurde in den weiteren auf das N_2 -freie in-situ-Intermediat $Mo(PMe_3)_2(pp_2)$ zielenden Versuchen das leicht lösliche THF-Addukt von 1, mer-MoCl₃(pp₂) · 0.75THF [16], nunmehr unter Argon mit feinverteiltem Lithium oder Natrium in PMe₃-haltiger Benzol- oder Toluol-Lösung reduziert. Allerdings mussten diesen Reaktionsgemischen stärker solvatisierende O-Donator-Solvenzien (Et₂O, THF) zugesetzt werden, um einen effizienten Elektronentransfer vom Alkalimetall zum gelösten Mo-Komplex zu gewährleisten. Bei Gegenwart von 1–4 Äquivalenten PMe₃ bildeten sich auch unter diesen Bedingungen zwar die Aren-Derivate 6 und 7; es wurde gleichzeitig aber auch ein Mo/C-H-Insertionsprodukt erhalten – anstelle der angestrebten Arylhydride Mo(H)(Ar)(PMe₃)₂(pp₂) allerdings der cyclometallierte Komplex MoH(CH₂PMe₂)(PMe₃)(pp₂) (4).

Zur vollständigen Charakterisierung der aus den vorstehenden Umsetzungen resultierenden Verbindungen wurden diese schliesslich gezielt dargestellt. Arenkomplexe des Typs Mo(ArH)(pp₂) (Ar = C_6H_6 (6), C_6H_5Me (7) und 1,3,5- $C_6H_3Me_3$ (8)) waren am besten zugänglich, wenn *mer*-MoCl₃(pp₂) \cdot 0.75THF mit Li- oder Na-Sand in Lösemittelgemischen aus Et₂O und den entsprechenden Aromaten ohne Zusatz vom PMe₃ reduziert wurden (Gl. 5). Tabelle 1 enthält ihre wichtigsten NMR-Daten.

$$mer-MoCl_{3}(pp_{2}) \cdot 0.75THF \xrightarrow{\text{Li od. Na}}_{\text{Et}_{2}O/\text{ArH}} Mo(\text{ArH})(pp_{2})$$
(5)
$$Arh = C_{6}H_{6} (6),$$

$$C_{6}H_{5}Me (7),$$

$$1,3,5-C_{6}H_{3}Me_{3} (8)$$

Aren	C ₆ H ₆ (6)	C ₆ H ₅ Me (7)	$1,3,5-C_{6}H_{3}Me_{3}$ (8)
H-NMR (80 MH	$C_6 D_6$		
δ(Aren-H)	3.89 (br)	3.92 (br, 2H)	4.2 (br)
		3.87 (br, 3H)	
$\delta(\text{Aren-CH}_3)$		2.09 (s)	2.17 (s, 3H)
5.		2.15 (s, 6H)	
³¹ P-NMR (145 MI	$I_{z}, C_6 D_6)$		
δ(MeP)	10.74 (t)	10.63(t)	11.26 (t)
$\delta(Me_2P)$	5.35 (d)	5.70 (d)	6.56 (d)
$^{2}J(PP)$ (Hz)	43.1	42.5	42.5

Tabelle 1 NMR-spektroskopische Daten von Komplexen des Typs Mo(ArH)(pp₂)

Das metallacyclische Derivat 4 liess sich in guter Ausbeute synthetisieren, wenn *mer*-MoCl₃(pp_2) · 0.75THF in reinem Diethylether in Gegenwart von 2 Äquivalenten PMe₃ mit Lithium oder Natrium zur Reaktion gebracht wurde.

 $mer-MoCl_{3}(pp_{2}) \cdot 0.75THF \xrightarrow{\text{Li od. Na/2 PMe_{3}}} \overline{MoH(CH_{2}PMe_{2})(PMe_{3})(pp_{2})}$ (6) (4)

Wurde in Gegenwart überschüssigen Trimethylphosphans gearbeitet, so entstand neben dem Metallaheterocyclus 4 auch die Mo^0 -Verbindung $Mo(PMe_3)_3(pp_2)$ (5). Diese ist in Lösung allerdings nicht als solche beständig, sondern setzt sich dort in einer dem Verhalten von $Mo(PMe_3)_6$ [15a] entsprechenden Weise mit PMe₃ und 4 in ein Dissoziationsgleichgewicht (Gl. 7). Sie lässt sich aus PMe₃-haltigen Lösungen aber kristallisieren.

$$Mo(PMe_3)_3(pp_2) \longrightarrow PMe_3 + MoH(CH_2PMe_2)(PMe_3)(pp_2)$$
(5)
(4)

Der cyclometallierte Komplex 4 besitzt anders als die ihm formal entsprechenden Derivative $MH(CH_2PMe_2)(PMe_3)_4$ (M = Mo [15a] W [15b]) ein bei Raumtemperatur auf der NMR-Zeitskala starres Koordinationsgerüst. Im ¹H-NMR-Spektrum (360 MHz, $C_2 D_2$) wurde für den MoH-Baustein ein bei $\delta = -3.02$ zentriertes Triplett von Tripletts $({}^{2}J(P_{2}H) = 17.5 \text{ und } 58.8 \text{ Hz})$ gefunden. Dieses Aufspaltungsmuster resultiert aus Kopplungen des Hydrido-Liganden mit den ³¹P-Kernen des Chelatphosphans und des nicht metallierten PMe₃-Liganden. Eine Spin/Spin-Wechselwirkung zwischen MoH und dem Dreiring-P-Atom tritt wie bei den formal analogen Komplexen MoH(CH₂PMe₂)(PMe₃)₄ [15a] und WH(CH₂PMe₂)(PMe₃)₄ [15b] nicht auf. Dies liess sich durch selektive ³¹P-Entkopplung zeigen: während sich bei Einstrahlung auf die Resonanzen der jeweiligen P-Kerne der pp₂- und PMe₃-Liganden die Multiplizität des MoH-Signals von "tt" nach "dt" änderte, blieb das $MoH(CH_2PMe_2)$ -³¹P-Kern vorgenommene Entkopplungsexperiment ohne am Auswirkungen auf das dreifache MoH-Triplett. Das in C7D8 bei 145 MHz aufgenommene ³¹P-NMR-Spektrum von 4 gehörte zum Typ $AMQ_2X (P_A = MeP(CH_2)_2)$, $P_M = PMe_3$, $P_Q = Me_2PCH_2$, $P_X = MoCH_2PMe_2$) und war durch folgende Para-meter gekennzeichnet: $\delta(P_A) = 19.70$, $\delta(P_M) = 17.05$, $\delta(P_Q) = -2.57$, $\delta(P_X) =$

Atom	x/a	y/b	z/c	Punktsymmetrie	Besetzung
Мо	0	0	0	m3m	1/48
Р	0.2148(2)	0	0	4mm	1/8
C ^b	0.293(1)	0.046(1)	0.150(1)	1	1/4
C' ^b	0.315(2)	0.094(2)	-0.094(2)	m	1/8
C″ ^b	0.249(2)	0	- 0.249(2)	mm	1/24

Tabelle 2 Kristallstrukturdaten von **4** [25]^{*a*}

^a Mo- K_{α} -Strahlung ($\lambda = 71.07 \text{ pm}$); Kristallabmessungen von 5 ($C_{20}H_{54}MOP_6$, M = 576.43): $0.2 \times 0.2 \times 0.2 \text{ mm}$; Raumgruppe $Im\bar{3}m$, a = 1134.9(2) pm, $V = 1461.8 \cdot 10^6 \text{ pm}^3$, Z = 2, $D_c = 1.310 \text{ g cm}^{-3}$, $\mu = 7.0 \text{ cm}^{-1}$; 168 unabhängige Reflexe (gesammelt durch $\theta/2\theta$ -Abtastung, $4.5^\circ \le 2\theta \le 50^\circ$), davon 154 signifikant ($F_0 > 4\sigma$) und ohne Absorptionskorrektur benutzt; anisotrope Verfeinerung, R = 0.035, $R_w = 0.028$, Gewichtung $w = 1/\sigma^2(F_0)$, Reflex/Parameter-Verhältnis: 6.4; Programmsystem SHELX 76 [27]. ^b C und C': P-gebundene C-Atome, C'': mittleres C-Atom der den pp₂-Liganden verknüpfenden Trimethylen-Ketten.

-47.43; ² $J(P_A P_M) \approx 0$, ² $J(P_A P_Q) = 30.0$, ² $J(P_A P_X) = 67.0$, ² $J(P_M P_Q) = 30.8$, ² $J(P_M P_X) = 3.5$, ² $J(P_Q P_X) = 17.8$ Hz. Im ¹³C-NMR-Spektrum (91 MHz, C₆D₆) war für das C-Atom des Dreirings ein doppeltes Triplett bei $\delta = -5.50$ mit den Aufspaltungen ¹J(PC) = 3.4 und ² $J(P_2C) = 14.5$ Hz zu beobachten. Obwohl diese spektroskopischen Daten keinen exakten Aufschluss über die Geometrie des Moleküls 4 liefern, ist anzunehmen, dass der dreizähnige pp₂-Ligand die für Chelatbildner dieses Typs übliche meridionale Anbindung an das Zentralmetall zeigt, im siebenfach koordinierten Komplex 4 also z.B. die axialen und äquatorialen Positionen einer pentagonalen Bipyramide überspannt. Ein solches Koordinationspolyeder liegt für 4 auch insofern nahe, als es für den verwandten Wolframkomplex WH(CH₂PMe₂)(PMe₃)₄, der ein sehr ähnliches Kopplungsmuster im ³¹P-NMR-Spektrum aufweist, kristallographisch gesichert ist [15b].

Da Mo(PMe₃)₃(pp₂) (5) in Lösung nicht zu charakterisieren war, wurde versucht, durch eine Strukturanalyse (Tab. 2) Aufschluss über seine molekulare Geometrie zu erhalten. Die kubische Raumgruppe $Im\bar{3}m$, die die gleiche ist wie für Mo(PMe₃)₆ [15a] und für zahlreiche Verbindungen des Typs M(Me₂PCH₂CH₂PMe₂)₃ (M = V, Nb, Ta, Cr, Mo, W) [26], erzwang bei der sich aus der Dichte $D_c = 1.310$ g cm⁻³ ergebenden zweifachen Besetzung der Elementarzelle jedoch die spezielle Mo-Lage 0,0,0 mit der Punktsymmetrie $m\bar{3}m$ und somit eine ideale oktaedrische Umgebung des Zentralteilchens. Dies führte für 5 zu einem Molekülmodell, in dem die C-Atome so schwer fehlgeordnet waren, dass der Struktur letztlich nur der Mo-P-Abstand, 243.8(2) pm, als sinnvoller Parameter entnommen, eine Aussage über eine meridionale oder faciale Koordination des pp₂-Liganden aber nicht getroffen werden konnte.

Ringöffnungsreaktionen von 4

Um zu prüfen, ob der metallacyclische 18e-Komplex 4 sich durch Ringöffnung mit seinem (NMR-spektroskopisch nicht nachweisbaren!) 16e-Tautomer Mo(P- Me_3)₂(pp₂) ins Gleichgewicht zu setzen vermag, wurde versucht, das koordinativ ungesättigte Teilchen auf chemischem Wege abzufangen.

Tatsächlich reagiert 4 mit N_2 rasch und quantitativ zu dem bereits an anderer Stelle [1] eingehend beschriebenen Mono(distickstoff)-Komplex $Mo(N_2)(PMe_3)_2$ (pp₂) (9):

$$MoH(CH_2PMe_2)(PMe_3)(pp_2) + N_2 \longrightarrow Mo(N_2)(PMe_3)_2(pp_2)$$
(8)
(4)
(9)

 PMe_3 wird von 4 unter Bildung von Mo(PMe_3)₃(pp_2) (5) ebenfalls aufgenommen. Allerdings verläuft diese Reaktion sehr langsam, und das Gleichgewicht zwischen 4 und 5 liegt in Übereinstimmung mit Gl. 7 weitgehend auf der Seite der cyclometallierten Mo^{II}-Verbindung.

 H_2 und CO_2 werden von 4 bzw. dessen Mo⁰-Tautomer im Sinne oxidativer Additionen gebunden, wobei MoH₂(PMe₃)₂(pp₂) (2) und das gleichfalls schon früher [1] diskutierte Carbonylcarbonat Mo(CO)₃)(CO)(PMe₃)(pp₂) (10) entstehen:

Versuche, auch aromatische Kohlenwasserstoffe an das 16e-Fragment Mo(P- Me_3)₂(pp₂) oxidativ zu addieren, blieben ergebnislos; anstelle der erhofften Arylhydride MoH(Ar)(PMe₃)₂(pp₂) bildeten sich die schon auf anderem Wege (s.o.) erschlossenen Aren-Derivate Mo(ArH)(pp₂). So erhielt man z.B. Mo(C₆H₆)(pp₂) (6) wenn 4 mit siedendem Benzol zur Reaktion gebracht wurde:

$$\frac{\text{MoH}(\text{CH}_{2}\text{PMe}_{2})(\text{PMe}_{3})(\text{pp}_{2})}{(4)} \xrightarrow{C_{6}\text{H}_{6}, -2\text{PMe}_{3}} \text{Mo}(C_{6}\text{H}_{6})(\text{pp}_{2})$$
(10)
(4) (6)

Schlussfolgerung

Ähnlich wie für Mo(PMe₃)₅ und W(PMe₃)₅ [15] sind auch für das 16e-Fragment Mo(PMe₃)₂(pp₂) die Voraussetzungen für eine *inter* molekulare oxidative C-H-Addition wegen der bereits im koordinativ ungesättigten Teilchen weitgehend ausgefüllten Ligandenhülle wenig günstig, so dass diese in-situ-Intermediate lediglich *intra* molekular cyclometallieren. Intermolekulare C-H-Additionen können an d^6 -ML₅-Metall/Ligand-Fragmenten offensichtlich nur dann ablaufen, wenn die Koordinationssphäre zumindest teilweise von platzsparenden Liganden wie C₅H₅⁻ oder H⁻ besetzt ist. Repräsentative Beispiele für solche Komplexteilchen, die C-H-Bindungen sowohl auf inter- als auch auf intramolekularem Wege zu lösen vermögen, bieten in der d^6 -ML₅-Reihe bislang nur die Rhenium(I)-Spezies (C₅H₅)Re(PMe₃)₂ [2b] sowie Osmium(II)-Intermediate des Typs OsH(R)(PMe₃)₃ [28].

Experimentelles

Alle Arbeiten wurden unter Ausschluss von Luft in trockenen Lösemitteln durchgeführt. Die Infrarotspektren wurden auf Gitterspektrometern (Perkin-Elmer 577, 325 und 225) aufgenommen. Für die NMR-spektroskopischen Untersuchungen standen die Bruker-Geräte AM 360 und WP 80 zur Verfügung. Die ¹H- und ¹³C-Verschiebungen wurden relativ zum Signal des jeweils benutzten Lösemittels (bezogen auf $\delta(TMS) = 0.0$) ermittelt. Zur Referenzierung der ³¹P-Spektren diente H₃PO₄ als externer Standard. Positive δ -Werte zeigen Tieffeldverschiebungen an. Gemessen wurde, sofern im Text nich anders vermerkt, bei üblicher Probenkopftemperatur. Für die bei 20 ± 2°C vorgenommene Bestimmung der Kristallstruktur von 4 wurde ein Diffraktometer des Typs Syntex P2₁ benutzt. Die Darstellung von MoCl₃(pp₂) · 0.75THF erfolgte wie in [16] beschrieben.

$MoH_2(PMe_3)_2(pp_2)$ (2)

Eine Lösungssuspension von 2.02 g (3.94 mmol) $MoCl_3(pp_2) \cdot 0.75THF$, 2.5 ml (ca. 30 mmol) PMe₃ und 500 mg Li-Staub in 60 ml THF wurde 16 h unter H₂ gerührt. Anschliessend wurde filtriert und das Filtrat im Vakuum zur Trockne eingedampft. Aus dem Rückstand liess sich durch Ausrühren mit Hexan (4 × 20 ml) und erneutes Filtrieren und Eindampfen der erhaltenen Lösung der gelbe Komplex 2 in einer Ausbeute von 860 mg (43%) isolieren. Gef.: C, 40.2; H, 9.3. $C_{17}H_{47}MoP_5$ (502.37) ber.: C, 40.64; H, 9.43%.

Komplex 2 bildete sich auch aus $MoH(CH_2PMe_2)(PMe_3)(pp_2)$ (4) und H_2 , wenn man 40 ml einer gesättigten Lösung der Verbindung 4 in Hexan 15 h unter H_2 rührte: Nach Abziehen des Lösemittels und Aufnehmen des Rückstands in C_6D_6 liessen sich im Hochfeld-Bereich des ¹H-NMR-Spektrums die Resonanzen von 2 beobachten, während die von 4 gelöscht waren.

$MoH_4(PMe_3)(pp_2)$ (3)

Zu einer Lösung von 1.59 g (3.10 mmol) $MoCl_3(pp_2) \cdot 0.75THF$ in 50 ml THF wurden 240 mg (3.16 mmol) PMe₃ und 600 mg Na-Sand gegeben. Nach 16 h Rühren unter H₂ und anschliessendem Filtrieren wurden alle flüchtigen Komponenten im Vakuum entfernt und der Rückstand mit 3×30 ml Hexan extrahiert. Aus den filtrierten vereinigten Extrakten liessen sich durch erneutes Abziehen des Lösemittels 970 mg (73%) der beigen Verbindung **3** isolieren. Gef.: C, 39.0; H, 9.0. $C_{14}H_{40}MOP_4$ (428.31) ber.: C, 39.26; H, 9.41%.

$MoH(CH_2PMe_2)(PMe_3)(pp_2)$ (4)

Ein Reaktionsgemisch aus $MoCl_3(pp_2) \cdot 0.75THF$ (1.58 g, 3.08 mmol), PMe₃ (480 mg, 6.32 mmol) und feinverteiltem Lithium (700 mg) in 100 ml Diethylether wurde 48 h unter Argon gerührt. Der nach anschliessendem Filtrieren und Entfernen des Lösemittels verbleibende Rückstand wurde mit mehreren Portionen Hexan (Gesamtvolumen 180 ml) ausgewaschen. Aus der so erhalten Lösung isolierte man nach Filtration und nochmaligem Eindampfen 1.23 g (80%) des braunen Komplexes 4. Gef.: C, 40.0; H, 9.1. $C_{17}H_{45}MoP_5$ (500.35) ber.: C, 40.81; H, 9.06%.

$Mo(PMe_{3})_{3}(pp_{2})$ (5)

1.00 g (1.95 mmol) MoCl₃(pp₂) · 0.75THF und 2.5 ml (ca. 30 mmol) PMe₃

wurden in 80 ml Et₂O mit 700 mg Li-Staub 17 h unter Ar gerührt. Danach wurde filtriert und zur Trockne eingedampft. Durch Digerieren des verbliebenen Rückstands mit Hexan (insgesamt 200 ml) und erneutes Filtrieren und Eindampfen gewann man ein gelbes Rohprodukt, welches neben 5 auch die cyclometallierte Verbindung 4 enthielt. Komplex 5 liess sich durch Kristallisation aus PMe₃-haltiger Hexan-Lösung in geringer Ausbeute in reiner einkristalliner Form erhalten. Gef.: C, 41.3; H, 9.1. C₂₀H₅₄MoP₆ (576.43) ber.: C, 41.67; H, 9.44%.

$Mo(C_6H_6)(pp_2)$ (6), $Mo(C_6H_5Me)(pp_2)$ (7) und $Mo(1,3,5-C_6H_3Me_3)(pp_2)$ (8)

Zur Darstellung dieser Komplexe wurden jeweils ca. 500 mg (≈ 1 mmol) MoCl₃(pp₂) · 0.75THF in Lösemittelgemischen aus 40–60 ml Et₂O und 10–15 ml des betreffenden Aromaten mit 500 mg Li-Sand 70 h unter einer Atmosphäre von Argon gerührt. Die Aufarbeitung erfolgte wie für 2–5 beschrieben. Die Ausbeuten schwankten zwischen 45 und 80%. 6; Gef.: C, 47.3; H, 7.6. C₁₇H₃₃MoP₃ (426.31) ber.: C, 47.90; H, 7.80%. 7; Gef.: C, 48.8; H, 7.8. C₁₈H₃₅MoP₃ (440.34) ber.: C, 49.10; H, 8.01: 8; C, 51.6; H, 8.5. C₂₀H₃₉MoP₃ (468.39) ber.: C, 51.29; H, 8.39%.

Der C₆H₆-Komplex 6 war anhand seines charakteristischen 31 P-NMR-Spektrums auch nachzuweisen, wenn der Metallaheterocyclus 4 mehrere Stunden in siedendem Benzol belassen wurde.

 $Mo(N_2)(PMe_3)_2(pp_2)$ (9) und $Mo(CO_3)(CO)(PMe_3)(pp_2)$ (10) aus 4 und N_2 bzw. CO_2

Je 40 ml einer gesättigten Lösung von 4 in Hexan wurden über Nacht unter N_2 oder CO₂ gerührt. Die nach Entfernen der im Ölpumpenvakuum flüchtigen Anteile hinterbleibenden Rückstände wurden IR-spektroskopisch sowie nach Aufnehmen in C_6H_6/C_6D_6 (3/1) auch ³¹P-NMR-spektroskopisch untersucht. Die erhaltenen Spektren zeigten lediglich die für den N₂-Komplex 9 bzw. das Carbonylcarbonat 10 charakteristischen Absorptionen und Resonanzen [1].

Dank

Unser Dank gilt dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft für die Unterstützung dieser Arbeit.

Literatur

- 1 L. Dahlenburg und B. Pietsch, Chem. Ber., 122 (1989), im Druck.
- 2 P.O. Stoutland, R.G. Bergman, S.P. Nolan und C.D. Hoff, Polyhedron, 7 (1988) 1429.
- 3 T.T. Wenzel und R.G. Bergman, J. Am. Chem. Soc., 108 (1986) 4856.
- 4 A.H. Janowicz, R.A. Periana, J.M. Buchanan, C.A. Kovac, J.M. Stryker, M.J. Wax und R.G. Bergman, Pure Appl. Chem., 56 (1984) 13.
- 5 H. Werner und K. Roder, J. Organomet. Chem., 281 (1985) C38.
- 6 R.H. Crabtree, Chem. Rev., 85 (1985) 245.
- 7 R. Hoffmann, Angew. Chem., 94 (1982) 725; Angew. Chem., Int. Ed. Engl., 21 (1982) 711.
- 8 J.-Y. Saillard und R. Hoffmann, J. Amer. Chem. Soc., 106 (1984) 2006.
- 9 P. Hofmann, H. Heiss und G. Müller, Z. Naturforsch. B, 42 (1987) 395.
- 10 L. Dahlenburg, Nachr. Chem. Techn. Lab., 36 (1988) 899.
- 11 (a) M. Hackett, J.A. Ibers, und G.M. Whitesides, J. Am. Chem. Soc., 110 (1988) 1436; (b) M. Hackett und G.M. Whitesides, J. Am. Chem. Soc., 110 (1988) 1449.
- 12 S. Nemeh, C. Jensen, E. Binamira-Soriaga und W.C. Kaska, Organometallics, 2 (1983) 1442.
- 13 C. Bianchini, D. Masi, A. Meli, M. Peruzzini und F. Zanobini, J. Am. Chem. Soc., 110 (1988) 6411.

- 14 (a) M. Antberg und L. Dahlenburg, J. Organomet. Chem., 312 (1986) C67; (b) M. Antberg, L. Dahlenburg, K.-M. Frosin und N. Höck, Chem. Ber., 121 (1988) 859; (c) L. Dahlenburg und K.-M. Frosin, Chem. Ber., 121 (1988) 865.
- 15 (a) M. Brookhart, K. Cox, F.G.N. Cloke, J.C. Green, M.L.H. Green, P.M. Hare, J. Bashkin, A.E. Derome und P.D. Grebenik, J. Chem. Soc., Dalton Trans., (1985) 423; (b) V.C. Gibson, C.E. Graimann, P.M. Hare, M.L.H. Green, J.A. Bandy, P.D. Grebenik und K. Prout, J. Chem. Soc., Dalton Trans., (1985) 2025.
- 16 B. Pietsch und L. Dahlenburg, Inorg. Chim. Acta, 145 (1988) 195.
- 17 D. Lyons, G. Wilkinson, M. Thornton-Pett und M.B. Hursthouse, J. Chem. Soc., Dalton Trans., (1984) 695.
- 18 E. Carmona, J.M. Marin, M.L. Poveda, R.D. Rogers und J.L. Atwood, J. Organomet. Chem., 238 (1982) C63.
- 19 E. Carmona, J.M. Marin, M.L. Poveda, J.L. Atwood und R.D. Rogers, J. Am. Chem. Soc., 105 (1983) 3014.
- 20 D. Lyons und G. Wilkinson, J. Chem. Soc., Dalton Trans., (1985) 587.
- 21 G.J. Kubas, C.J. Unkefer, B.I. Swanson und E. Fukushima, J. Am. Chem. Soc., 108 (1986) 7000.
- 22 G.J. Kubas, Acc. Chem. Res., 21 (1988) 120.
- 23 R.H. Morris, K.A. Earl, R.L. Luck, N.J. Lazarowych und A. Sella, Inorg. Chem., 26 (1987) 2674.
- 24 J. Halpern, Inorg. Chim. Acta, 100 (1985) 41.
- 25 Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-53753, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- 26 F.G.N. Cloke, P.J. Fyne, V.C. Gibson, M.L.H. Green, M.J. Ledoux, R.N. Perutz, A. Dix, A. Gourdon und K. Prout, J. Organomet. Chem., 277 (1984) 61.
- 27 G.M. Sheldrick, SHELX 76, a Program for Crystal Structure Determination, Cambridge 1976.
- 28 P.J. Desrosiers, R.S. Shinomoto, T.C. Flood, J. Amer. Chem. Soc., 108 (1986) 7964.